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I am trying to capture your view of 
how to arrange nuclear data
! I will present the consensus view of required arrangement of 

nuclear data,  
• presented at SG38 Meeting in Tokai, Japan,  Dec. 2013 
• revised and presented at SG38 Meeting in Paris, France, Apr. 2014 
• revised again for this meeting 

! Element & attribute names are illustrative.  They can be 
changed. 

! We’ve tried to have a detailed discussion about the 
resonances, but I don’t think we’ve really wrapped it up
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R matrix background

! Divide the universe with a spherical box. 
! Outside box, use two-particle “free” wave functions  
! Somewhere inside the box is the reaction zone; we don’t 

care about the details.  Can write those details as the 
Green’s function solution of Schoedinger’s equation.   

! The R matrix is the Green’s function. 
! “Everything” can be written in terms of R; with it we can 

compute the scattering matrix U, so we have dσ/dΩ.
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H Resonances III THE TOP LEVEL: ONE EVALUATION

R matrix formalism can support any two-body final
state.

R:3 Expanded channel capabilities:

R:3.a Configurable ignored or collapsed channels
(like � ones in Reich-Moore approximation)

R:3.b Configurable channels to denote whether cor-
responds to actual two-particle final state or
e↵ective one (as in fission or competitive chan-
nels). Only two-body channels can be used to
compute angular distributions; need to be able
to flag “e↵ective” channels

R:3.c Channel points to or has a unique reaction
string

R:3.d If channel not in reaction list, specify particles
out, Q, etc.; particles in particle database so
have spin, parity, energy, mass, charge, etc

R:3.e List s of each resonance (resolves and ENDF
ambiguity).

R:3.f List K, if appropriate (esp. for deformed nu-
clei).

R:3.g User-definable (possibly fake) quantum num-
bers, e.g. fission mode. Must define whether
combine using angular momentum adding
rules (for BB) or incoherently.

R:3.h Boundary parameter

R:3.i channel radius vs true channel radius

R:3.j Decay-out probabilities (to accommodate
(n, �f) channels?)

R:3.k sign of reduced width

R:4 A resolved resonance region

R:5 Optionally an unresolved resonance region

discussion point The channel wish list is very big.
Would it make more sense to completely separate it from
the channel concept of the <reaction> element?

To understand the hierarchy of resonance data, it is
helpful to understand a little about R matrix theory. In
it, we divide the universe into the inside of a box and
the outside of the box. Inside the box is the reaction
zone, where all the interesting nuclear (or other) reaction
business occurs (see Figure 10). We have little chance
of modeling what goes on the box correctly without a
lot of work. Outside the box we write all incoming and
outgoing relative two-body scattering states in a basis
of analytic wave functions, usually taken to be free ones.
We then match wave functions on the box boundary. This
matching is done in a clever way involving Bloch surface
operators on the box boundary and from this we arrive
at a Green’s function of the projected Bloch-Schödingier
equation, also known as the R matrix:

Rcc0 =
X

�

��c��c0

E� � E
(1)
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FIG. 10. A cartoon representation of R matrix theory. We
first divide the universe into inside a box and out. Inside the
box is the reaction zone, that we have little chance of modeling
correctly without a lot of work. Outside the box we write all
incoming and outgoing relative two-body scattering states in
a basis of analytic wave functions, usually taken to be free
ones. We then match wave functions on the box boundary.

These factors ��c are the reduced widths of the channel
c, E� becomes the resonance energy (it is a pole in the
Laurent series expansion of the Green’s function) and � is
the resonance (pole) index. The channel index c contains
all the quantum numbers needed to describe the outgoing
two-particle state and all of those quantum numbers are
described in the <channel> element markup above.

discussion point Putting the R matrix itself in the
format is silly because we’d be replacing a set of reso-
nance parameters with basically a reconstructed version
(see Eq. (1)), but packed in an complicated and not very
usable fashion. If you want a reconstructed version, use
point-wise cross section tables.

discussion point Kapur-Peiers and/or Wigner-
Eisenbud? Both approaches use di↵erent boundary
parameters Bc. They are mathematically equivalent,
but the RRR approximations in ENDF all use Wigner-
Eisenbud formulation.

With the R matrix, it is possible to compute exactly
the channel-channel scattering matrix Ucc0 :

Ucc0 =e�i('c+'c0 )
p

Pc

p

Pc0

⇥ {[1�R(L�B)]�1[1�R(L⇤ �B)]}cc0
(2)

where The logarithmic derivatives of the outgoing chan-
nel function are

Lc ⌘ ac
O0

c(ac)

Oc(ac)
=



rc
@ lnOc

@rc

�

rc=ac

(3)

and we write

Lc = Sc + iPc. (4)
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R matrix background

! “Everything” can be written in terms of R; with it we can 
compute the scattering matrix U:
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equation, also known as the R matrix:

Rcc0 =
X

�

��c��c0

E� � E
(1)

I Oa 

Wednesday, August 14, 13

FIG. 10. A cartoon representation of R matrix theory. We
first divide the universe into inside a box and out. Inside the
box is the reaction zone, that we have little chance of modeling
correctly without a lot of work. Outside the box we write all
incoming and outgoing relative two-body scattering states in
a basis of analytic wave functions, usually taken to be free
ones. We then match wave functions on the box boundary.

These factors ��c are the reduced widths of the channel
c, E� becomes the resonance energy (it is a pole in the
Laurent series expansion of the Green’s function) and � is
the resonance (pole) index. The channel index c contains
all the quantum numbers needed to describe the outgoing
two-particle state and all of those quantum numbers are
described in the <channel> element markup above.

discussion point Putting the R matrix itself in the
format is silly because we’d be replacing a set of reso-
nance parameters with basically a reconstructed version
(see Eq. (1)), but packed in an complicated and not very
usable fashion. If you want a reconstructed version, use
point-wise cross section tables.

discussion point Kapur-Peiers and/or Wigner-
Eisenbud? Both approaches use di↵erent boundary
parameters Bc. They are mathematically equivalent,
but the RRR approximations in ENDF all use Wigner-
Eisenbud formulation.

With the R matrix, it is possible to compute exactly
the channel-channel scattering matrix Ucc0 :

Ucc0 =e�i('c+'c0 )
p

Pc

p

Pc0

⇥ {[1�R(L�B)]�1[1�R(L⇤ �B)]}cc0
(2)

where The logarithmic derivatives of the outgoing chan-
nel function are

Lc ⌘ ac
O0

c(ac)

Oc(ac)
=



rc
@ lnOc

@rc

�

rc=ac

(3)

and we write

Lc = Sc + iPc. (4)

14

B Integrals of the cross section IV OBSERVABLES

IV. OBSERVABLES

A. Cross sections

Angle integrated cross section can be written as sum
over all entrance channels c = {↵J`s} and exit channels
c0 = {↵0J 0`0s0} that lead from partition ↵ to ↵0:

�
cc

0 = ⇡�2

c

g
c

|�
cc

0 � U
cc

0 |2 (77)

So, the total cross section for channel c is

�
c

⌘
X

c

0

�
cc

0 = 2⇡�2

c

(1�<U
cc

) (78)

The factor of g
c

is the probability of getting the correct
J from the spins of the collision partners (according to
Fröhner) and is g

c

= (2J + 1)/((2i+ 1)(2I + 1)).
Detailed balance (swapping c and c0 in U

cc

0) (⌘ time
reversal invariance) gets us

�
c

0
c

g
c

0�2

c

0
=

�
cc

0

g
c

�2

c

(79)

Note, these equations only make sense for di↵erential
cross sections that can actually be integrated. For un-
charged projectiles (n’s and �’s) these equations make
sense. For e.g. protons, one cannot integrate the elastic
di↵erential cross section d�/d⌦ over angles because of the
Coulomb singularity. In those cases, one must use di↵er-
ential cross sections given below in the section of angular
distributions.

B. Integrals of the cross section

Several integral quantities are easy to measure and thus
are useful for data comparison and testing:

• Resonance integrals (RI):

RI =

Z 1

Ec

�(E)dE/E (80)

Here the lower cut-o↵ is usually taken to be the
Cadmium cut-o↵ energy of E

c

= 0.5 eV (see S.
Mughabghab, Atlas of Neutron Resonances). If the
covariance is provided, the uncertainty on the res-
onance integral will be computed.

• Maxwellian averaged cross section (MACS):

MACS(kT ) =
2p
⇡

m2

(kT )2

Z 1

0

dEE�(E)e�mE/kT

(81)

E is the incident neutron energy in the lab frame
and m = m

2

/(m
1

+m
2

)
• Wescott G-factor:
is the ratio of Maxwellian averaged cross section (at
room temparature) and the room temperature cross
section. Should be pretty close to 1 if cross section
goes like 1/v.

C. Angular distributions for two-particle out
channels

The Blatt-Beidenharn to construct the d�
c

/d⌦ for the
(usu.) elastic channel [8]. Is valid for any two-body sys-
tem in the center-of-momentum (⌘ center of mass usu.).
Spin algebra may only be valid in non-relativistic limit
(HAVE TO CHECK). Although d�

c

/d⌦ can be written
as a Lorenz covariance quantity, we will write the outgo-
ing dependence on angle in the pair center of mass frame
and the incident energy in the laboratory frame.

For spin zero particles, we have

d�
↵,↵

0(E)

d⌦
=

1

k2

1X

L=0

B
L

(↵,↵0;E)P
L

(µ) (82)

and

B
L

(↵,↵0;E) =
1

4

X

`,`

0

(2`+ 1)(2`0 + 1)(``000, L0)2(1� U⇤
`

(E))(1� U
`

0(E)) (83)

Here U
`

is the scattering matrix and only depends on ` because we have spin zero particles.
For particles with arbitrary spin, we have

d�
↵,↵

0(E)

d⌦
=

1

k2(2i+ 1)(2I + 1)

X

s,s

0

1X

L=0

B
L

(↵s,↵0s0;E)P
L

(µ) (84)
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over all entrance channels c = {↵J`s} and exit channels
c0 = {↵0J 0`0s0} that lead from partition ↵ to ↵0:

�
cc

0 = ⇡�2

c

g
c

|�
cc

0 � U
cc

0 |2 (77)

So, the total cross section for channel c is

�
c

⌘
X

c

0

�
cc

0 = 2⇡�2

c

(1�<U
cc

) (78)

The factor of g
c

is the probability of getting the correct
J from the spins of the collision partners (according to
Fröhner) and is g

c

= (2J + 1)/((2i+ 1)(2I + 1)).
Detailed balance (swapping c and c0 in U

cc

0) (⌘ time
reversal invariance) gets us

�
c

0
c

g
c

0�2

c

0
=

�
cc

0

g
c

�2

c

(79)

Note, these equations only make sense for di↵erential
cross sections that can actually be integrated. For un-
charged projectiles (n’s and �’s) these equations make
sense. For e.g. protons, one cannot integrate the elastic
di↵erential cross section d�/d⌦ over angles because of the
Coulomb singularity. In those cases, one must use di↵er-
ential cross sections given below in the section of angular
distributions.

B. Integrals of the cross section

Several integral quantities are easy to measure and thus
are useful for data comparison and testing:

• Resonance integrals (RI):

RI =

Z 1

Ec

�(E)dE/E (80)

Here the lower cut-o↵ is usually taken to be the
Cadmium cut-o↵ energy of E

c

= 0.5 eV (see S.
Mughabghab, Atlas of Neutron Resonances). If the
covariance is provided, the uncertainty on the res-
onance integral will be computed.

• Maxwellian averaged cross section (MACS):

MACS(kT ) =
2p
⇡

m2

(kT )2

Z 1

0

dEE�(E)e�mE/kT

(81)

E is the incident neutron energy in the lab frame
and m = m

2

/(m
1

+m
2

)
• Wescott G-factor:
is the ratio of Maxwellian averaged cross section (at
room temparature) and the room temperature cross
section. Should be pretty close to 1 if cross section
goes like 1/v.

C. Angular distributions for two-particle out
channels

The Blatt-Beidenharn to construct the d�
c

/d⌦ for the
(usu.) elastic channel [8]. Is valid for any two-body sys-
tem in the center-of-momentum (⌘ center of mass usu.).
Spin algebra may only be valid in non-relativistic limit
(HAVE TO CHECK). Although d�

c

/d⌦ can be written
as a Lorenz covariance quantity, we will write the outgo-
ing dependence on angle in the pair center of mass frame
and the incident energy in the laboratory frame.

For spin zero particles, we have

d�
↵,↵

0(E)

d⌦
=

1

k2

1X

L=0

B
L

(↵,↵0;E)P
L

(µ) (82)

and

B
L

(↵,↵0;E) =
1

4

X

`,`

0

(2`+ 1)(2`0 + 1)(``000, L0)2(1� U⇤
`

(E))(1� U
`

0(E)) (83)

Here U
`

is the scattering matrix and only depends on ` because we have spin zero particles.
For particles with arbitrary spin, we have

d�
↵,↵

0(E)

d⌦
=

1

k2(2i+ 1)(2I + 1)

X

s,s

0

1X

L=0

B
L

(↵s,↵0s0;E)P
L

(µ) (84)
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Ucc’ is in there, but 
you do NOT want to 
see the equation



R matrix background

! R matrix theory works for any two particles 
! R matrix theory is exact 
! R matrix theory is elegant
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R matrix background

! R matrix theory works for any two particles 
! R matrix theory is exact 
! R matrix theory is elegant
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ENDF screws it up



<resonances>

! Standard ENDF 
MF=2, MT=151 (but 
improved) 

! <setOfChannels>: 
the list of channels/
reactions in this 
element 

! <RRR> are the 
resolved 
resonances 

! <URR> are average 
resonance data

7

+
+

= 1 
= 1 or 0 
= Any num.



<resonances>

! Standard ENDF 
MF=2, MT=151 (but 
improved) 

! <setOfChannels>: 
the list of channels/
reactions in this 
element 

! <RRR> are the 
resolved 
resonances 

! <URR> are average 
resonance data

8

+
+

= 1 
= 1 or 0 
= Any num.This gives us 

LRF=7 style 
flexibility



What we need for a <channel>

! reaction designator  
! really just the identity of the 2 

particles 
! ENDF’s LRF=7 has all this, 

but w/o particle database is 
quite verbose 

! relativistic/non-
relativistic flag 

! ENDF MT (if 
appropriate) 

! s, l, J, ∏  

! other user-definable 
quantum numbers  
(e.g. K) 

! boundary parameter Bc 
! channel radius 

information 
! sign of reduced width

9



<resonances>

! Standard ENDF 
MF=2, MT=151 (but 
improved) 

! <setOfChannels>: 
the list of channels/
reactions in this 
element 

! <RRR> are the 
resolved 
resonances 

! <URR> are average 
resonance data

10

+
+

= 1 
= 1 or 0 
= Any num.

Several options to correct 
resonance backgrounds, 
we’ll come back to these



RRR, cont. ! ENDF gives a lot of possible  
approximations and modifications  
to the R matrix; not all of these  
are faithful to R matrix theory 

! We will need to grandfather in all of 
the ENDF approximations, no matter 
how bad they are: 
• (LRF=1) SLBW 
• (LRF=2) ENDF-style MLBW 
• (LRF=7, KLM=2) CALENDF-style 

MLBW (aka MNBW) — this is a 
controlled R-matrix approximation 

• (LRF=3) ENDF-style Reich-Moore 
• (LRF=7, KRM=3) Reich-Moore — 

this is a controlled R-matrix 
approximation 

• (LRF=7, KRM=4) Full R-matrix 
• (LRF=4) Adler-Adler ? 

! Do w/ attribute on <RRR>
11

+
+

= 1 
= 1 or 0 
= Any num.



RRR
! The RRR doesn’t need a complicated format, but it 

needs a complete one.  All we need is a <table>: 
!

!

!

!

!

!

! Columns in table must map to appropriate <channel>

12

E Γ Γ Γ Γ ...
eV eV eV eV meV ...

1.23 9.433 0 2.33E-03 7.1 ...
1.46 4.833 0 2.33E-03 4.6 ...
3.45 1.78 1.78 0 0 ...
... ... ... ... ...



RRR, cont. ! ENDF provides a lot of tricks to  
help repair damage bad  
approximations cause 

! We will need to grandfather in all the 
ENDF tricks to fix the ENDF 
approximations, no matter how bad 
they are. 

! Background R-matrix fixes: 
• (KBK=0) Dummy resonances 
• (KBK=1) Tabulated function 
• (KBK=2) SAMMY’s logrithmic 

parameterization 
• (KBK=3) Froehner’s 

parameterization

13

+
+

= 1 
= 1 or 0 
= Any num.



Fixing the background R-matrix is not 
always enough

! Background cross sections may be 
needed to be added to certain 
channels 

! Angular distributions may need to 
be specified if parameterization 
doesn’t support them or if we don’t 
trust them 

! Better to keep this with the RRR than 
in the <reaction> hierarchy.

14

+
+

= 1 
= 1 or 0 
= Any num.



URR

! We don’t know the resonances (they are unresolved).  
We assume  
• the resonance energies are distributed according to random matrix 

theory 
• the widths of the resonances are distributed with χ2 distributions 

! ENDF further assumes the resonances were given in 
SLBW 

! With these assumptions, can compute 
• average cross sections 
• probability distributions for cross sections, e.g. P(σ|E) using NJOY’s 

PURR module 
• GRUCON developers take it further… they replace all 

RRR with URR.  Compute P(σtot|E) and P(σx|σtot,E)

15



URR

16

! Need: degree of  
freedom for each  
channel 

! Need: table with: 
• incident energy 
• average level spacing 
• average width for each channel 

! Need interpolation scheme for average parameters  
! Should we also put a flag for the approximation (to 

allow other than SLBW)? 
! Need a spot for PURR probability distributions, to be 

covered later

+
+

= 1 
= 1 or 0 
= Any num.



Are we missing anything?
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